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EQUATIONS OF DISLOCATION PLASTICITY WITH LARGE DEFORMATIONS 

Yu. I. Fadeenko UDC 539.374 

In investigations of the dynamic plasticity the simplest model of the theory of disloca- 
tion, including Orovan's equation 

• ~ bNv, 

the law governing the motion of the dislocations 

v = v(+) 

and the equation of kinetics of dislocations 

(la) 

(lb) 

= N(~), (Ic) 

where y is the shear deformation; T, tangential stress; N, density of dislocations; v, their 
slipping velocity; and b, absolute magnitude of Burgers vector, is often used. It is also 
assumed that all dislocations are mobile and slip with identical velocities. Equation (ic) 
is usually written in the form N = No + A~ s, where s is a quantity of the order of one, and 
the motion is described either by the law of viscous friction 

or by Taylor's empirical formula [I] 

~b = By,  (2a) 

v = v0exp(--%/~ (2b) 

(B is the coefficient of viscous friction). 

This very simple model corresponds to conditions of superbarrier slipping with uniform 
chaoticdistribution of dislocations and can be used to describe small deformations of metals 
with low initial dislocation density. However, it neglects the fact that the uniform dis- 
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tribution rapidly becomes unstable and already for relatively small deformations dislocations 
become organized in some nonuniform structures (slipping bands, clumps, plates, cells, etc.), 
after which the nature of the motion of the dislocations changes markedly andthe assumption 
that all dislocations move with the same velocity is no longer applicable. In most metals, 
especially in bcc metals (aluminum, copper, nickel), a cellular structure forms rapidly. 
With subsequent deformation, the evolution of the cellular structure proceeds in two stages. 
In the first stage the size of the cell % decreases with increasing N in accordance with 
Holt's empirical formula 

~(W) = g/1/~ (3) 

where K = 15...20 [2]. At the second stage the size of the cells remains constant. 

Plastic deformation is accompanied by multiplication of dislocations and an increase of 
N, as a result of which the metal hardens. Both for the uniform distribution and for cellu- 
lar structures, deformation hardening is described by the approximate dependence 

r = r0 + =~bV~ (4) 

where Y is the yield point with respect to shear; G is the shear modulus. The magnitudes of 
the coefficients a differ somewhat for the uniform distribution and for the cellular struc- 
ture and, moreover, vary little from metal to metal, but in the first approximation we can 
set a = 0.5. For T < Y, almost all dislocations are firmly confined by the walls of the cell. 
For T > Y, separate dislocations break away from the walls and move into the interior of the 
cells until they collide with the walls. Usually, z is only slightly greater than Y, even 
with high-velocity deformation, so that the cellular framework remains stable. The simplest 
kinetic equation for this case can be written in the form 

d N I d t  = m ? / b ~  - -  ? N h / b ,  (5) 

where X/m is the average kinetic transit distance of the dislocations; h is the effective an- 
nihilation cross section for collisions of dislocations with opposite signs. Integration of 

(5), using (3), gives 

]/~-= (~/Kh)[l -- exp(--?h~b)]. 

The first stage is completed for some y1 and N/~--I = K/%1. For y > y1, Eq. 
grated with constant %, which leads to 

(6) 

(5) must be inte- 

N = m&%1 + (NI-- m&%1) exp [--(? -- ?1)h/b]. (7) 

From the experimental data for cellular structures in copper, presented in [3], we can con- 
clude that m = 1.25 and h = 0.6b. Such a small magnitude of the effective h must be explained. 
The cross section for annihilation for a uniform distribution is about 10b [4], but for non- 
uniform structures with separated dislocations of opposite signs h must be set equal to twice 
the product of this quantity by the probability of an encounter between dislocations of op- 
posite sign accompanying trapping by a wall. For copper this probability equals 0.03, which 
indicates the quite high degree of ordering of the separation and correlation of the posi- 
tions of sources and sinks of dislocations in the cellular structure. The quantity h can 
vary during the course of deformation, if the deformation is accompanied by an appreciable 
change in the ordering of the walls of the cells. 

Relations (6) and (7) in principle solve the problem of the specific form of the kinetic 
equation (ic) for the cellular structure. The difficulty lies in the fact that, at the pres- 
ent time, there is not yet enough data on the specific values of the points at which the re- 
gime Y1 changes for different metals and their dependence on the deformation regime. For 
example, for slow deformation of copper K = 16, %1 = 2 ~m, and y1 = 0.05. But, for shock-wave 
hardening of copper, the cells in the copper are fragmented to sizes of 0.15 ~m [5]. Judging 
from the strong dependence of the position of the transition on the temperature of deforma- 
tion and the melting temperature of the metal, this phenomenon is determined by the thermal- 
ly activated climbing of dislocations. If this is true, then under the conditions of high- 
velocity deformation, dislocation climbing can be neglected, using (6) up to deformations of, 
at least, the order of 0.2...0.4. 
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For the cellular structurer the density of mobile dislocations n differs from the aver- 
age density N, so that (la) should be used in the form ~ = bnv, and the problem of determin- 
ing n thus arises. We shall use for this purpose the thermodynamic approach, assuming that 
from the possible regimes, which give a fixed velocity of deformation, a regime is selected 
which minimizes the resistance to deformation. The thermodynamic approach in this form was 
first used in [6], as a result of which it was possible, in particular, to explain quali- 
tatively the empirical formula (3). 

Thus we assume that for T > Y the internal volumes of the cells are filled with mobile 
dislocations with density n. As a result, the contribution of the cellular framework, deter- 
mined by the quantity (N -- n), to T decreases, but a corresponding contribution of mobile 
dislocations and a viscous component appear. Mobile dislocations in interior volumes of the 
cells do not sustain the stress applied to the cellular framework, and for them the stress of 
self-blocking is determined only by the magnitude of n. For the law of motion (2a), 

Applying to (8) the condition 

we obtain 

d':/an [~;,N==o~st = o, 

~cb/ ~ t__!___~_~B=o" -~-kV-~-V.~-~-~] ~b ~ 

(8) 

(9a) 

Analogously, for the law of motion (2b), 

~Gb(t  1. ) nr  o 
-- ,-r-- =0. (9b) 

Thus, with deformation in the cellular regime, system (i) must be replaced by the kinetic 
equation (6) [or (7)] and Eqs. (8) and (9), for which, by eliminating n we determine the 
value of ~ corresponding to the instantaneous values of T, N. The use of Eq. (9) in numeri- 
cal investigations does not present any special difficulties. These equations are applicable 
until n exceeds some critical fraction N, i.e., as long as the cellular structure is stable. 
In particular, for n << N we obtain the estimate 

n ~ (2~B/aGba)2/a. 
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